Лабораторная работа №1. Текстовый режим работы дисплея

Большинство программ требуют вывод данных в удобном формате на экран. Все необходимые экранные операции можно выполнить используя команду INT 10H, которая передает управление непосредственно в BIOS и затем возвращает управление в прерванную программу для продолжения работы. Функция, которую следует выполнить, и другие параметры необходимые для её выполнения, передается в BIOS через регистры. Таким образом, перед вызовом прерывания необходимо в соответствующие регистры загрузить необходимые данные. Например, чтобы вывести на экран символ, необходимо указать номер функции, которая выводит символ, номер видео страницы, на которую будет выведен символ, и ASCII код этого символа. Каждая команда требует свои параметры, все они будут описаны ниже.

Установка видеорежима

Установка видеорежима для выполняемой в текущий момент программы осуществляется с помощью функции 00h программного прерывания BIOS INT 10H. Данная функция позволяет переключать цветной монитор в текстовый или графический режим. Содержимое регистра AL в момент вызова прерывания определяет видеорежим, который будет установлен после выполнения операции, и может принимать следующие значения:

```
00h – 40 x 25 черно-белый текстовый режим;

01h – 40 x 25 стандартный 16-цветовой текстовый режим;

02h – 80 x 25 черно-белый текстовый режим;

03h – 80 x 25 стандартный 16-цветовой текстовый режим;

04h – 320 x 200 стандартный 4-цветовой графический режим;

05h – 320 x 200 черно-белый графический режим;

06h – 640 x 200 черно-белый стандартный монохромный;

07h – 80 x 25 черно-белый стандартный монохромный;

0Dh – 320 x 200 16-цветовой графический режим (EGA);

0Eh – 640 x 250 черно-белый графический режим (EGA);

0Fh – 640 x 350 черно-белый графический режим (EGA);
```

Пример 1. Установить графический режим 320 x 200, 4 цвета.

```
mov ah, 00h ; Указываем номер функции ; выбора графического Режима mov al, 04h ; Номер режима 320x200, 4 цвета int 10h ; Вызов прерывания
```

Установка курсора

Экран можно представить в виде двумерного пространства с адресуемыми позициями, в любую из которых может быть установлен курсор. Обычный видеомонитор, например, имеет 25 строк (нумеруемых от 0 до 24) и 80 столбцов (нумеруемых от 0 до 79).

Пример 2. Установить курсор на 5-ю строку и 12-й столбец.

```
mov ah, 02h ; Функция установки курсора mov bh, 00h ; Видео страница 0 mov dh, 05h ; Номер строки 5 mov dl, 0Ch ; Номер столбца 12 int 10h ; Вызов прерывания
```

Значение 02h в регистре AH, указывает на выполнение функции установки курсора. Значение строки и столбца должны быть, соответственно, в регистрах DH и DL. Номер видео страницы – в регистре BH (обычно 0, для графического режима). Для установки строки и столбца можно также использовать одну команду MOV, с непосредственным двухбайтовым значением:

```
mov dx, 050Ch
```

Для того чтобы сделать курсор невидимым, установите его на 25-ю строку.

Роллирование окна вверх/вниз

Для роллирования окна вверх и вниз используются функции с номерами, соответственно, 06h и 07h. Также эти функции можно использовать для очистки всего экрана или определенной его области. В регистре АН указывается номер функции (06h или 07h, в зависимости от того куда роллировать), в АL – количество строк, которое будет сроллированно (если 0, то окно будет очищено). В СН,СL – строка, колонка верхнего левого угла окна (считая от 0). В DH,DL – строка, колонка нижнего правого угла окна. В ВН – видеоатрибут, используемый для пустых строк (07h – нормальный атрибут чернобелый).

Пример 3. Выполнить очистку всего экрана

```
mov ah, 06h ; Функция роллирования mov al, 00h ; Очистка mov bh, 07h ; Черно-белый mov cx, 0000h ; Загрузка левой верхней ; позиции экрана mov dx, 184Fh ; Правая нижняя позиция int 10h ; Вызов прерывания
```

В этом примере использован указанный выше способ загрузки двухбайтового значения.

Вывод символа

Для вывода одного символа на экран могут использоваться две функции: 0Ah и 0Eh. Обе операции выводят указанный символ от позиции курсора, отличие в том, что первая при этом не изменяет положение курсора, а вторая перемещает его вслед за выводом символов. Если выводить 5 символов функцией 0Ah, они будут отображаться на одном и том же месте, затирая собой предыдущий, а если использовать функцию 0Eh, то при каждом выводе курсор будет перемещаться, и в результате символы отобразятся друг за другом, слева направо.

При использовании функции 0Ah, перед вызовом прерывания, необходимо в регистре AH указать номер функции (0Ah), в AL – ASCII код символа, в BH – номер видео страницы, в CX – количество раз. Вывод на экран последовательности различных символов требует организации цикла.

При использовании функции 0Eh, содержимое регистров AL и BH такое же, как и в случае использования функции 0Ah. В регистр AH загружаем 0Eh, а в BL – цвет символа в графическом режиме.

Пример 4. Вывести произвольный символ в центр экрана.

```
;Перед выводом необходимо установить курсор в центр ; экрана по примеру 2 mov ah, 0Ah ; Номер функции mov al, 03h ; В AL код символа «Черви» mov bh, 00h ; Видеостраница 0
```

mov cx, 01h ; Один раз int 10h ;Вызов прерывания

Байт атрибутов

Байт атрибутов как для монохромного, так и для графического дисплея в текстовом (не графическом) режиме определяет характеристики каждого отображаемого символа. Байт-атрибут имеет следующие 8 бит:

Атрибут	BL	R	G	В	I	R	G	В
№ бита	7	6	5	4	3	2	1	0

Буквы RGB представляют битовые позиции, управляющие красным (red), зеленым (green) и синим (blue) лучем в цветном моноторе. Бит 7 (BL) устанавливает мигание, а бит 3 (I) – уровень яркости.

Для модификации атрибутов можно комбинировать биты следующим образом:

Двоичный код	Шестнадцатеричный код	Эффект
0000 0000	00	Неотображаемый (для паролей)
0000 0111	07	Белый по черному (обычный)
1000 0111	87	Белый по черному (мигание)
0000 1111	0F	Белый по черному (яркий)
0111 0000	70	Черный по белому (инвертированный)
1111 0000	F0	Черный по белому (инвертированный мигающий)

Как видно, меняя атрибуты можно выделять фрагменты выводимого текста, делая его более наглядным и удобным для прочтения, можно сделать вводимый текст невидимым – для запроса ввода паролей, и т.д.

Вывод символа с атрибутом

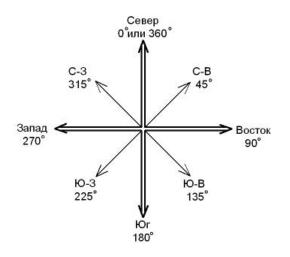
Функция 09h. Данная функция аналогична функции 0Ah, описанной выше, с тем отличием, что при использовании этой функции существует возможность указать атрибут выводимых символов.

Атрибут указывается в регистре ВL. Содержимое остальных регистров аналогично операции 0Ah.

Пример 5. Вывести на экран 5 мигающих «сердечек» в инвертированном виде.

```
mov ah, 09h ;Указываем номер функции
mov al, 03h ;В AL код символа «Черви»
mov bh, 00h ;Номер страницы
mov bl, 0F0h ;Атрибут (мерцание, инверсия)
mov cx, 05h ;5 раз
int 10h ;Вызов прерывания
```

Методические указания


Решение задачи выполняется в FASMW.exe

Вариант определяется по списку преподавателя. Для данного варианта задание определяется по таблицам: цифра определяет направление текста, первая буква — цвет фона, вторая — цвет текста.

Установите стандартный 16-цветовой текстовый режим и выведите ваши имя и фамилию в указанном направлении с заданными цветами текста и фона.

Направление	№
Север	1
Юг	2
Запад	3
Восток	4
Северо-восток	5
Юго-восток	6
Северо-запад	7
Юго-запад	8

Цвет	№
Красный	a
Зеленый	b
Синий	c
Желтый	d
Голубой	e
Лиловый	f
Белый	g
Черный	h

Варианты заданий

- 1) 3fb
- 2) 2ce
- 3) 1db
- 4) 2ge
- 5) 1bc
- 6) 4he
- 7) 7gb
- 8) 8fb
- 9) 3eg
- 10) 4ag
- 11) 6eh
- 12) 5hb
- 13)7ce
- 14) 8bg
- 15) 2db
- 16) 6bg
- 17) 6gc
- 18) 7eh
- 19) 4ah
- 20) 5ae
- 21) 8fe
- 22) 8ag
- 23) 6ef
- 24) 7ab
- 25) 3db
- 26) 1ef
- 27) 5gd
- 28) 7hb
- 29) 8cb
- 30) 1ca